

FABRIC and **FAB**

Anita Nikolich University of Illinois

> Ilya Baldin RENCI

FABRIC/FAB Leadership Team

Ilya Baldin (RENCI)

KC Wang (Clemson)

Anita Nikolich (UIUC)

Tom Lehman (Virnao)

Inder Monga (ESnet)

Paul Ruth (RENCI)

Jim Griffioen (UKY)

Zongming Fei (UKY)

Why FABRIC?

- The Internet is one big workaround. Protocols are awful. Security is an add-on.
- Make the future Internet more stateful
 - Cheaper compute GPUs, FPGAs enables this approach
 - Routers wouldn't look the way they do today if we could start over!
- ML/AI
 - Network as a 'big-data' instrument: real-time measurements + inferencing control loop
 - Security/anomaly detection, provisioning, etc
 - "Self-driving network" Juniper marketing buzz
- IoT + 5G high-speed intelligent network edge
- Continuum of computing
 - Not just "edge" or "cloud" but more seamless structure

Network as part of computing substrate - computing, fusing, processing data on the fly

FABRIC for everyone

FABRIC Enables New Internet and Science Applications

- Stateful network architectures, distributed applications that directly program the network

FABRIC Advances Cybersecurity

- At-scale realistic research facilitated by peering with production networks

FABRIC Integrates HPC, Wireless, and IoT

- A diverse environment connecting PAWR testbeds, NSF Clouds, HPC centers and instruments

FABRIC Integrates Machine Learning & Artificial Intelligence

- Support for in-network GPU-accelerated data analysis and control

FABRIC helps train the next generation of computer science researchers

U.S.-Based Testbeds: a short history

Past Testbeds were Sandboxes

Did not connect experiment topologies to the Internet or production facilities

What is FABRIC? An NSF Mid-Scale Project

A testbed that enables a new paradigm for distributed applications and Internet protocols:

- A nation-wide programmable network with compute and storage at each node. Run computationally intensive programs & maintain information in the network.
- GPUs, FPGAs, and network processors (NICs) inside the network
- Supports Quality of service (QoS) dedicated optical 100Gb
- Interconnects national facilities: HPC, cloud & wireless testbeds, commercial clouds, Internet, edge nodes, science instruments, universities and labs
- Design and test applications, protocols and services that run at any node in the network not just edge or cloud

FABRIC Nodes ("hanks")

- Puts compute and storage in the path of fast packet flows
- Rack of high-performance servers (Dell 7525):
 - 2x32-core AMD 7532 with 512G RAM
 - GPUs (RTX 6000 and T4), FPGA network/compute accelerators
 - Storage 1TB NVMe drives in servers & pool of ~250TB rotating storage per site.
 - Connect to 100G+ programmable switch
- Reconfigurable Network Interface Cards
 - FPGAs (with P4 support)
 - Speeds : 25G, 100G, 200G+(future)
 - Kernel Bypass/Hardware Offload
 - VM/Containers to support full-rate DPDK

Conceptual FABRIC Node 'Hank' Overview

a.k.a. 'A disaggregated router'

Value Add: Fine Grained Measurement Capabilities

- GPS clock source using PTP (almost all sites)
- NICs that can do accurate packet sampling/timestamping
- Full packet capture at line speed for designated time
- Smart PDUs to measure power
- Optical layer measurements (where available) & experimentation
- CPU, memory, disk, port/interface utilization and other timeseries (software)

FAB (FABRIC Across Borders) – International

- Japan (University of Tokyo)
- UK (University of Bristol)
- EU (University of Amsterdam)
- CERN

- New Use-cases & Partners
 - Astronomy/Cosmology (CMB-S4, LSST) test new data processing solutions to work on alert streams and "data in transit"
 - Weather (UMiami) new workflows for high-res weather data between US & Brazil; Efficiently distributing data on weather events
 - High-Energy Physics (Co-PI Rob Gardner)
 - Urban Sensing/IoT/AI at Edge (UBristol)
 - Computer Science: 5G across borders, P4/SDN, Cybersecurity/Censorship Evasion

FAB EU Connectivity

- Ring of three interconnected OpenExchange points (GEANT London, GEANT Paris, NetherLight) facilitates traffic in the region and across international links. Amsterdam Exchange point is operated by SURFnet.
- High degree of flexibility for Layer 2 and/or Layer 3 flows to other EU locations, or back to US.

Example: Testing HEP data analysis approaches

• Real-time filtering and accelerated HEP data delivery

FABRIC

• Develop and test ML algorithms - inferencing within FABRIC nodes for real-time data processing

Timeline

Help Us!

- Host a Hank Node
- Join a Community Working Group: Data/Storage, Security, Measurement
- Feedback on topology
- Cool experiments?

Thank You!

Questions?

Visit https://whatisfabric.net

Ask info@fabric-testbed.net

Email me: anitan@illinois.edu

FABRIC Software: https://github.com/fabric-testbed

This work is funded by NSF grant CNS-1935966

Back Up Slides

Example FABRIC Use-case Scenarios

Examples of potential uses:

- Bump-in-wire measurements and packet sampling at high bit rates (25, 40, 100, 100+ Gbps)
- Hardware-accelerated switching using Smart NICs, FPGA NICs or P4 switches in individual nodes
- Hosting in-network applications and stateful architectures using a combination of storage and compute resources in individual nodes
- In-network inference, other types of accelerated computing via FPGAs and GPUs
- Connect experiments to external facilities like IoT, 5G, cloud testbeds, public clouds and HPC resources.
- Deploy non-IP protocols on top of wide-area L2 topologies, that may include in-network processing and storage

FABRIC Near-Term use-cases

- FABRIC 'Science Design Drivers':
 - SRI Network Security
 - Georgia Tech 5G/IoT/Network Resilience
 - University of Virginia ML/Autonomous Network Management
 - FIU Named Data Networking and AR/5G
- FAB : domain-oriented use-cases
 - Efficient distribution and in-network fusion of astronomical event data
 - LSST/Vera Rubin and CMB-S4
 - Urban Sensing
 - Connecting COSMOS, SAGE and University of Bristol testbeds
 - Weather science
 - Efficiently distributing data on weather events
 - Computer Science
 - Censorship evasion
 - Private 5G across borders
 - SDX policy negotiation

